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SUMMARY ir 4

A
The boundary conditions corresponding to the design problem when the blades being simulated by the
bound vorticity distribution are presented. The 3D flow is analyzed by the two steps S2 — S1 approach. In
the first step, the number of blades is supposed to be infinite, the vortex distribution is transformed into an
axisymmetric one, so that the flow field can be analyzed in a meridional plane. The thickness distribution of
the blade producing the flow channel striction is taken into account by the modification of metric tensor in
the continuity equation. Using the meridional stream function to define the flow field, the mass conservation is
satisfied automatically. The governing equation is deduced from the relation between the azimuthal component
of the vorticity and the meridional velocity. The value of the azimuthal component of the vorticity is provided
by the hub to shroud equilibrium condition. This step leads to the determination of the axisymmetric stream
sheets as well as the approximate camber surface of the blade. In the second step, the finite number of blades is
taken into account, the inverse problem corresponding to the blade to blade flow confined in each stream sheet
is analyzed. The momentum equation implies that the free vortex of the absolute velocity must be tangential
to the stream sheet. The governing equation for the blade to blade flow stream function is deduced from this
condition. At the beginning, the upper and the lower surfaces of the blades are created from the camber surface
obtained from the first step with the assigned thickness distribution. The bound vorticity distribution and the
penetrating flux conservation applied on the presumed blade surface constitute the boundary conditions of the
inverse problem. The detection of this flux leads to the rectification of the geometry of the blades.

NOMENCLATURE

r circulation

Vo upstream velocity

h pitch of the cascade

a inlet angle

B outlet angle

¢ potential function

) stream function

f(z), f(m,¥) bound vortex distribution function, or loading function

dl tangential displacement

J camber line inclination angle with respect to the meridional plane

z,y Cartesian coordinates

z,0,r cylindrical coordinates

€L, 62,8 body fitted curvilinear coordinates

g determinant of the metric tensor

gij metric tensor elements

Ny number of blades in the rotor or stator

ré6. thickness of the blade measured in the azimuthal direction

922 modified g22 simulating flow channel striction

g determinant of the modified metric tensor (flow channel striction)

P density

U, U3 Uu? contraviant components of the absolute or relative velocity
absolute velocity

W relative velocity

Vo azimuthal component of the absolute velocity

m meridional streamwise curvilinear abscissa _J

PRECEDING PAGE BLANK NGT FILMED



166
Third International Conference on Inverse Design Concepts and Opumization 1n Engineering Scicnces
(ICIDES-IID. Editor; G.S. Dulikravich, Washington D.C,. October 23-25, 199]

w angular velocity of the rotor
r pressure

Pt total pressure

H stagnation enthalpy or p,/p
I rothalpy or H + w(Ve)

F, blade force

fd dissipative force

n efficiency

z!, z? transformed coordinates system in S1 approach
Subscripts

le leading edge

te trailing edge

° reference

¢ tangentiel component

n normal component

ik nodal point indices
Superscripts

+ upper side of the blade

- lower side of the blade

1. INTRODUCTION.

Most of the blading design procedures consider the velocity distribution on both sides of the blade as the
initial data, the inverse problem becomes ill-posed and the designer loses the control of thickness distribution of
the blade. To overcome this deficiency, this paper suggests an inverse method by representing the blades by a
distribution of bound and free vortices which produce the desired swirl (V,r) variation. By introduction of the
notion of associated elements on both sides of the blade in respect of the thickness distribution, and by imposing
a conservative flux penetration through each pair of the associated elements when the geometry of the blade
is not yet well defined, we obtain the well-posedness of the inverse problem. The iterative rectification of the
camber surface in order to cancel the flow penetration leads to the final geometry of the blade. Treating first
the 2D cascade design, §2 is devoted to show how to get the well posed inverse problem with the appropriate
boundary conditions applied on the presumed blade contour, and the procedure leading to the rectification of
the camber line related to the penetrating flux of the fluid determined on both sides of the blade. To treat the
quasi 3D design, the S2 and S1 approach as proposed by C.H. Wu [1] is adopted. The loading produced by the
velocity difference between the two faces of the blade is directly related to the bound vorticity distribution that
the blade has to generate. Assuming the number of blades infinite, the vortex distribution as well as the flow
field become axisymmetric (S2 flow), §3 shows how the blade thickness distribution and the loading distribution
can be taken into account in this scheme, and how to deduce the pressure distribution on the blades when their
number is finite. An application to the case of the centrifugal impeller is presented. The loss scheme by the
introduction of a plausible value of efficiency 7 for each streamline as suggested by J.H. Horlock (2] is used. This
approach opens up possibilities for the elaboration of a design which maintains the assigned value of the total
pressure gain in each stage by modifying the (Vyr) distribution in free space between blade rows. §4 is devoted
to the blade to blade flow (S1) inverse problem, the boundary conditions for 2D inverse problem are transposed
to this quasi-3D flow. The stream function is used to define the flow field and the finite volume method is used
to solve the problem. Examples show the results concerning the design of centrifugal impeller.

2. INVERSE PROBLEM FOR THE 2D CASCADE.

Figure 1 shows the geometry of the blade characterized by its thickness distribution and the shape of
its camber line. The arc elements taken respectively on the upper side and the lower side tangential to two
inscribed circles centered on the camber line at z — dz/2 and z + dz/2 are called associated to the camber line
element. The center of these associated elements are characterized by the abscissa z of the camber line element.
Let V, represent the upstream velocity, h the pitch of the cascade, a and 8 the inlet and outlet flow angles, the
circulation I' of the bound vortex generated by the blade is given by:
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T = V,h(sina — cosatan B)

The bound vortex distribution on the blade can be represented by the function T'f(z), where f(z) has to be a
monotonic increasing function of z for the inverse problem: f(zic) = 0, f(ze) =1 and df /dz > 0 defines the
local loading. Figure 2 shows the typical form of the function f(z), df /dz = 0 must be imposed near the trailing
edge in order to obtain the zero loading according to the Kutta-Joukowsky condition; when the zero loading
condition is imposed near the leading edge, the design will give a blade with adapted leading edge. The flow
field can be represented by the velocity potential ¢ or by the stream function v, the assignment of the bound
vortex distribution leads respectively to the following boundary condition applied on the associated elements
on both sides of the blade [3]:

Wt =T o (oo’ = 1% 4 (2.1)

As the boundary condition is imposed on the presumed contour of the blade, the penetration of the fluid must
be admitted., In order that the boundary condition does not produce extra flux, the flux penetration through
each pair of associated elements is to be conservative, this implies:

[g—i-dl]t =0 or [¥)T=0 (2.2)

The solution of the inverse problem determines the flux penetrating through the associated boundary elements,
the camber line inclination correction ¢ is given by:

- Vn + - Vn -
59 = 0.5/tan " (==)" +tan" (5 2.3
[ an ( Vt ) an ( Vt ) ] ( )

Using this, the camber line rectification is performed iteratively. For the 2D incompressible potential flow, the
complex potential ¢ +1¢ is an analytical function of z +1y, the panel method using the multiform singularities
distribution described in |4] was used firstly to solve the inverse problem with success, this confirms that the
boundary problem is correctly formulated. Figure 3 shows the initial and the final shape of a blade designed with
adapted leading edge and with an appropriate loading distribution to prevent the boundary layer separation.

3. MERIDIONAL FLOW, S2 APPROACH.

In the first step, the vortex distribution is transformed into an axisymmetric one by spreading it in the
agimuthal direction, this situation is equivalent to the case where the number of blades in the rotor or in the
stator is assumed to be oo, the flow field becomes also axisymmetric and can be analyzed in a meridional plan.
Let €1, €2 = 6, and £° represent the body fitted curvilinear coordinates (Fig. 4), the meridional velocity is
represented by: U =Vig + V3 =Wie + W3, the continuity equation becomes:

1 ,3GpU | 8yGoU°
_\/—5[ ‘{956"1 + \?6"3 ]=0 (3.1)

where § represents the determinant of the modified metric tensor due to the flow channel striction produced by
the thickness of the blades. Indeed, /g represents the volume of the elementary cube: (3 x &) &, in the free
space |&2| = /922 =T, and in the blade row space the thickness of the blade reduces the flow channel, if ré6.
denotes the thickness measured in the peripheral direction, N, the number of blades in the rotor or stator, the
modified element Jp3 of the metric tensor is determined by:

N8,
2x

oz =(1- )272

/7 simulating the elementary volume with striction in (3.1) is evaluated with §z;. Using the stream function
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¥ to represent the fow field by imposing:
Ut = 1 a_‘b 3 _ __._1 Pi
vy 8€° Vg 8¢

the equation (3.1) is satisfied automatically. The governing equation for ¥ is obtained by writing V x U =%,
where 12 represents the asimuthal component of V x V, it is deduced from the hub to shroud equilibrium
condition. Let

(3.2)

p Vi g P W2 LIS
=f;s .= a =P YT -
ot . an . +3 2 H + w (Ver)
The momentum equation is:
= 1% -VH £ Fy stator
 x - = -+ ——
{W {-VI PP { rotor (3.3)

In fact, there iz a pressure gradient in the arimuthal direction in the fiow space between blades, in the axial
symmetric S2 flow where the number of blades is supposed infinite, this pressure gradient disappears and the
volume force F3/p due to the blades has to be added in the momentum equation. The loss scheme 2] related
to the plausible value of efficiency n for each streamline of the stage is added, this scheme suggests that the
dissipative force F4/p is related to the variation de Vor via n:

£ (n-pplV - V(Ver) |V stator

—_ = 34
P { (1- n)i#F[W -V (Ver)|W rotor (34)
Fi=0as well as F, = 0 are imposed in the free space. Figure 5 shows the relation between the kinetic moment
distribution in the blade row space and the circulation of the bound vortices produced by the blades. Let Ty
denote the circulation generated by the blade in the section cut by an axisymmetric stream surface ¢ = cte, the
kinetic moment (Vgr)m x generated by the bound vortices located between the leading edge and the abscissa m
can be represented by:

(Verlmw = (Vorkicw + 52T (m, ¥) (35

Using (3.4) and adopting that 81/3¢2 or H/3¢? being equal to —(Fy)z/p in the dissipative scheme, the
azimuthal component of the momentum equation leads to:

_(ﬁ:)_: = [v? ag;ﬂl") +V? a‘(a‘?;) (3.6)

where W; = Vor + wr® and V; = Vyr. The coordinates system € is chosen so that the constant €3 lines are
iteratively replaced by the streamlines. The component following &3 of the momentum equation represents the
hub to shroud equilibrium condition, which gives:

2_ 1 ﬁ’+waﬁ01_@_@ rotor
Ve = vi [{ {‘5’ + V:\/-?nl [ P } {lutor (3.7)

" Let fi design the normal of the camber surface of the blade, we have:

fi=n &+ ngf?+ g

As W 1 7 in the rotor and V 1 7 in the stator, we have:

W3 or Vie—(22vi4 22y9)
na n;

and £, || &, we have:
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Gli.ng (3.4), (3.6) and the last 3 relations, (3.7) becomes:

Jon = & 3 L m18(Ver) _ s 8(Ver)
IR Lo 86  np 88
(1-n) 7 Vs (1 8(Ver) | +s8(Ver) {rotor
—{(’7—1)(—“,"—)5 W[V ¢t tV 863] stator (3.8a)

In the free space, the component following #% of the momentum equation leads directly to:

free space g}’ = .‘}_1{ 3H _ (Ver) 3(Ver) }

— . ——— ———

R T (3.8b)

The dot product of the momentum equation with V in the stator and in the free space or with W in the rotor
Jeads to the following relations which serve to update the podal values of H or I:

{free space o0H _

0
stator am { (n— 1)“,.8_@ (3.92)

om

8l _ 8(Ver)
rotor am—(l n)w Fy

where 3( )/8m denotes the meridional streamwise tangential derivative. Writing V x U = 01?&;, we obtain
the governing equation of y:

(3.9b)

_a_(_’“_l_a_‘ﬁ).,,_"_(ﬂ_’_fi
TV TV ATS
8 oy 8 , 9 O
56 vsae) " 5E ppae) ~ VI 10

For the inverse problem, the distribution of Vpr is assigned, using (3.8), (1% is updated iteratively. Let the
camber surface of the blade be defined by 8 = £2(€},€°) + ete, if the coordinate lines £ = cte are updated to
the streamlines iteratively, £2 can be computed using the slip condition:

s, [ e

= —d 3.11
€=+ [, grdt (3.1
Figure 5 shows the geometry of the blading of a multistage turbopump obtained by solving the inverse problem.
The CPU time on IBM 3090 in scalar mode is about 1 minute for the entire turbopump. The grid used for the
$2 computation is 300x16. Figure 6 shows the comparison of the centrifugal impellers designed with n = 1 and

v < 1 baving the same level of total pressure gain.

Bilade surface pressure evaluation. - Usually the S2 approach leads to the determination of the mean
velocity on both faces of the blade:

g22(Ver + wr’)’rn
922("07)2

Let AU denote the difierence of the absolute velocities (V* — V=) or the relative velocity (W™ ~ W) on the
two faces of the blade, when the number of blades is finite, this difference is related to the local density of
bound vortex generated by the blade. In the 52 scheme, consider the blade section cut by a £ = cte surface,
the flux of bound vortices generated by the element 6¢' of the blade is determined by the flux of £} through
the elementary surface (§5)s&> = \/g6£16€28°, where §¢2 sbould be equal to 2x/N,. Using the Stokes relation
that implies the circulation produced by AU is equal to the flux of the bound vortices we get the following
relation:

(3.12)

t W
{ro or = [911V1V’ +29;3V‘V’+9,,V’V’+

stator v

2x cosf ‘ .
(B8U)ix = E_\/E_A__IHV"]'::%:' {3.13)
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where £ denotes the local angle of the blade section with respect to the meridional plane. (3.12) and (3.13) are
used to compute surface velocity on both faces of the blades, then the pressure distribution by the S2 approach
can be deduced. (Fig. 9)

4. BLADE TO BLADE FLOW, S1 APPROACH.

The blade to blade fiow confined in each axisymmetric stream sheet is analyzed in order to define the final
geometry for each section of the blade and to obtain the pressure distribution. At the beginning, the contour
of the blade is created from the camber line obtained from the S2 step with the assigned thickness distribution.

The conformal mapping (m, §) => (2!, z%):
der, / dm
mo T (4.1)

22 =ro(f — 6,)

transforms the blade to blade flow confined in an axisymmetric stream sheet into a 2D cascade flow in the
(z,22) plane. The body fitted coordinate system constituted by the equipotential lines ' = cte and the
streamlines ¢2 = cte of a fictive 2D flow around the cascade is created using the panel method [4]. In this
system, the continuity equation becomes:

7 [5mtevavy + 3 (pV5U%)] =0 (42

where U® represent the contravariant components of the absolute velocity V for the stator and relative velocity

W for the rotor and
D(z z?

= D(¢',€2) \r ( )
where D(z',22)/D(¢?, £?) denotes the Jacobian, 7 represents the local thickness of the stream sheet. Introduc-
ing the stream function ¢ with

V=

gre 1 9¢
INCEIE 03

P93¢
(4.2) is satisfied. From the momentum equation, we can show that the free vortex of the absolute velocity
shedding from the preceeding blade row must be tangential to the axisymetric stream sheet, the governing
equation of the blade to blade flow stream function is deduced from this condition: for the relative flow around
the blades of the rotor, we have:

922 ay g 9y
~[5& pf8€‘)+ vl

8gnW?! 391, W? wrd logr

- g + 2¢? +2y/9— ; (4.4)
Boundary conditions for the inverse problem:
Flux conservation: [¥)* =0
.. . 1 + (4.5)
Bound vorticity assigned: [W1d€' —wr?df]” = Tdf

The solution of the inverse problem leads to the determination of flux penetration on the blade contour, the
camber line inclination correction ¢ is given by:

w:o.s[tan-*(—f@‘v"v—j)uta ({:“’:) ] (4.6)
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Figure 7 shows the network (€, €2) around a blade row for an impeller. Figure 8 shows the comparison
of the camber lines of the impeller obtained from the S2 approach and rectified by the S1 approach. Figure 9
shows the pressure distributions obtained from the S2 and S1 approaches. For the case of the turbopump, the
loading is optimised to avoid the cavitation. The results from the S2 and S1 computations are similar, but not
identical, the need of the S1 computation to obtain the final geometry definition of the blades is confirmed. For
one stream sheet, the CPU time on a IBM workstation RISC 6000/320 is about 40 minutes, or about 5 minutes
on IBM 3090 in scalar mode. The grid used is 150x16.

5. CONCLUSION.

The representation of the blades by the vortex distribution enables the formulation of the well-posed
inverse problem, and which leads to design the blading of a turbomachine. The two steps S2 — S1 quasi-3D
approach has been applied on different axial and radial geometries. Several kinds of loading function have
been tried. The results show that the success of the blading design depends greatly on the meridional (Vpr)
distribution assignment associated with the loss distribution. To optimise the design in order to avoid the
formation of the cavitation or the separation of the boundary layer in the design condition, when the loading
is not too high, experiences show that an adequate modification of the bound vortices distribution function f
may effectively lead to prevent the surface pressure to be lower than the cavitation level or to maintain the
adverse pressure gradient below the boundary layer separation criterion. The inverse problem procedure has
been elaborated to calculate the turbomachines in incompressible range, the research works are planning to
extend this method to make the transonic designs.
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|_ having the same level of total pressure gain.
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Fig. 9. Pressure distribution for 3 sections of the impeller from S2-S1 approaches.



